Study material generic cover image

Summary Intelligente Systemen

Course
- Intelligente Systemen
- Tomas Klos
- 2019 - 2020
- Universiteit Utrecht
- Kunstmatige Intelligentie
245 Flashcards & Notes
Scroll down to see the PDF preview!
  • This summary
  • +380.000 other summaries
  • A unique study tool
  • A rehearsal system for this summary
  • Studycoaching with videos
Remember faster, study better. Scientifically proven.
Trustpilot Logo

A snapshot of the summary - Intelligente Systemen

  • College 1

  • Wat zijn PEAS descriptions?
    Om een goede rationale agent te maken moeten we weten wat het task environment is. Om dat te omschrijven gebruiken we PEAS:
    • Performance measure (Safe? Fast? Legal?)
    • Environment (road, weather, traffic)
    • Actuators (sturen, remmen, toeteren)
    • Sensoren (camera, GPS)
  • De 4 basis soorten agenten:
    1. Simple reflex agent
    2. model-based reflex agent
    3. goal-based agent
    4. utility-based agent
  • Wat voor een model gebruiken de knowledge-based agents?
    Model of environment
  • College 2

  • Stel dat K een conjunctie van alle formules van KB is. KB |= α desda (K → α) is...
    1. satisfiable
    2. valid
    3. unsatisfiable 
    Nummer 2 klopt.
  • KB |= α desda KB ∪ {¬α} is ..
    1. satisfiable
    2. valid
    3. unsatisfiable 
    Nummer 3 klopt
  • College 3

  • Unit resolution + de regel
      α ∨ β, ¬β
    __________
            α  

    • Logisch equivalent aan de modus ponens
    • Unit resolution rule: Laten c en c 2 tegenovergestelde literals (propositionele variabele) zijn. Dus bv. p is logisch equivalent aan ¬p.
  • Transform (p ↔ (q ∧ ¬r)) to a formula in CNV
    (p ↔ (q ∧ ¬r))
    ≡ (p → (q ∧ ¬r)) ∧ ((q ∧ ¬r) → p) ↔ elimination
    ≡ (¬p ∨ (q ∧ ¬r)) ∧ (¬(q ∧ ¬r) ∨ p) → elimination
    ≡ ((¬p ∨ q) ∧ (¬p ∨ ¬r)) ∧ (¬(q ∧ ¬r) ∨ p) distributivity
    ≡ ((¬p ∨ q) ∧ (¬p ∨ ¬r)) ∧ ((¬q ∨ ¬¬r) ∨ p) De Morgan
    ≡ ((¬p ∨ q) ∧ (¬p ∨ ¬r)) ∧ ((¬q ∨ r) ∨ p) double ¬

    After removing unnecessary brackets:
    (¬p ∨ q) ∧ (¬p ∨ ¬r) ∧ (¬q ∨ r ∨ p)
  • How to check if α follows from KB?
    By showing that KB ∪ {¬α} is unsatisfiable.
    1. Convert the sentences from KB and ¬α to CNF (+ decompose each CNF formula into a set of clauses)
    2. Apply resolution rule to resulting clauses.
    • Each pair that contains complementary literals is resolved to produce a new clause.
    • Add to the set if it is not already present
    3. Continue until one of two things happen: 
    • An application of the resolution rule derives the empty disjunction , in which case KB entails α 
    • There are no new clauses that can be added, in which case KB does not entail α 

    The empty disjunction is a contradiction
  • College 4

  • Can we formalize this kind of reasoning in propositional logic?
    All humans are mortal
    Socrates is a human
    ______________________________
    Conclusion: Socrates is mortal

    An attempt:
    • p: All humans are mortal 
    • q: Socrates is a human 
    • r: Socrates is mortal 

    Antwoord: {p, q} |/= r
  • Whereas propositional logic assumes world contains facts, first-order logic (like natural language) assumes the world contains:
    • Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries . . . 
    • Relations: red, round, prime, multistoried . . ., brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
    • Functions: father of, best friend, one more than, plus . . .
Read the full summary
This summary. +380.000 other summaries. A unique study tool. A rehearsal system for this summary. Studycoaching with videos.
  • Higher grades + faster learning
  • Don't study anything twice
  • 100% sure, 100% understanding
Discover Study Smart